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Abstract

Mutation of the West Nile virus-like particle (WN VLP) prM protein (T20D, K31A, K31V, or 

K31T) results in undetectable VLP secretion from transformed COS-1 cells. K31 mutants formed 

intracellular prM-E heterodimers; however these proteins remained in the ER and ER–Golgi 

intermediary compartments of transfected cells. The T20D mutation affected glycosylation, 

heterodimer formation, and WN VLP secretion. When infectious viruses bearing the same 

mutations were used to infect COS-1 cells, K31 mutant viruses exhibited delayed growth and 

reduced infectivity compared to WT virus. Epitope maps of WN VLP and WNV prM were also 

different. These results suggest that while mutations in the prM protein can reduce or eliminate 

secretion of WN VLPs, they have less effect on virus. This difference may be due to the quantity 

of prM in WN VLPs compared to WNV or to differences in maturation, structure, and symmetry 

of these particles.
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Introduction

West Nile virus (WNV) is an emerging global pathogen causing WN fever and 

meningoencephalitis. Since its introduction into the Western Hemisphere in 1999 it has 

spread throughout North and Central America and the Caribbean and currently is the leading 

cause of mosquito-borne human encephalitis in the region (Mackenzie et al., 2004). WNV is 

a member of the family Flaviviridae, genus Flavivirus. It is maintained in an enzootic cycle 

between mosquitoes and birds with humans and other mammals as incidental hosts 

(Mackenzie et al., 2004). Other medically important flaviviruses include Japanese 

encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), yellow fever virus, and the 

four serotypes of dengue viruses (DENV).
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WNV has a single-stranded, positive sense 11 kb RNA genome that encodes 3 structural 

proteins at its 5′-end. The envelope (E) protein is the major virion glycoprotein responsible 

for virus membrane attachment and fusion. The capsid (C) protein binds the genomic RNA 

to form the nucleocapsid. The pre-membrane (prM) protein is a chaperone that assists in the 

maturation of the E protein, and occurs as a prM-E heterodimer. The prM-E heterodimers 

form 60 trimeric spikes on the surface of the immature DEN2 virion that measures 600 Å in 

diameter (Li et al., 2008). The pr peptide is the amino terminal part of the prM protein that is 

cleaved from prM during virion maturation by the host multibasic-recognition protease 

furin. The pr remains associated with the virion to protect the fusion loop of the E protein 

from premature fusion until reaching an extracellular neutral pH environment. Once the 

virion reaches a neutral pH, the pr peptide dissociates, resulting in the formation of a fusion-

competent particle (Yu et al., 2009). Since this cleavage by furin can be inefficient, and 

appears to be host-cell dependent, not all virions released from cells contain mature M and 

in fact, there is likely populations of virions containing M, prM or a mixture of prM and M 

on the virion surface as demonstrated by cryo-electron microscopy (Cherrier et al., 2009; 

Junjhon et al., 2010; Pokidysheva et al., 2006; Zhang et al., 2003). The existence of prM in 

infectious flavivirus particles has also been established with experiments measuring pH 

sensitivity, viral tropism and neutralization capacity of antibodies with less accessible sites 

on E when prM is present (Davis et al., 2006; Guirakhoo et al., 1992; Nelson et al., 2008).

The polyprotein encoded by the flavivirus RNA genome is translated in association with the 

rough endoplasmic reticulum (ER). Several transmembrane domains of the polyprotein 

traverse the ER membrane and co- and post-translational cleavages to produce functional 

products are carried out by the host enzyme signalase and the virally-encoded protease 

NS2B-3 (Lindenbach and Rice, 2003). The viral structural proteins prM and E form dimers 

on the ER membrane, producing an icosahedral scaffold that may or may not enclose the 

viral RNA genome packaged in the nucleocapsid (Konishi et al., 1992; Schalich et al., 

1996). The virus particles acquire their lipid bilayer envelopes as they bud into the lumen of 

the ER and are transported through the Golgi for further envelope protein modification, 

including glycosylation of the structural proteins and cleavage of the pr peptide from the 

prM protein by host furin protease. Virus particles contained in vesicles are released from 

the cell through the exocytic pathway (Mackenzie and Westaway, 2001).

Recent studies have shown the importance of the prM protein in the maturation and 

secretion of virions and VLPs. Tan et al. (2009) showed that the highly conserved tyrosine at 

amino acid (AA) residue 78 in the ectodomain of the prM protein of WNV is essential for 

virus assembly and secretion from cells (Tan et al., 2009). The H99 residue in the prM 

protein of JEV, positioned opposite from hydrophobic surfaces on the E protein, was shown 

to be critical in the formation of prM-E heterodimers. The transition to neutral pH may 

change interactions between amino acids at this prM-E interface, leading to release of pr and 

formation of mature virions (Li et al., 2008). Yoshii et al. (2004) found that mutating the 

prM P63 to a serine greatly reduced the production of VLPs and virions of TBEV (Yoshii et 

al., 2004). This AA lies in the pr region of the prM protein that is conserved in flaviviruses 

and was shown to be crucial in the formation of prM-E heterodimers (Yoshii et al., 2012). 

The loss of the N-linked glycosylation site in the pr portion of JEV prM protein results in a 
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20-fold decrease in infectious virion production and decreased virulence in mice inoculated 

peripherally with mutant virus (Kim et al., 2008).

In order to map the epitope binding of 3 fully human monoclonal antibodies (hMAbs), we 

made four mutations (T20D, K31A, K31V, K31T) in the prM protein of the WN VLP that 

resulted in failure to secrete VLP antigen from transfected cells (Calvert et al., 2011). 

Although VLPs were not secreted as a result of these mutations, prM antigen was detected 

in the transfected COS-1 cells. In this report we examine the effects of these prM mutations 

on WN VLP assembly and secretion as well as on infectious virus replication and protein 

expression.

Results

Mutations in WNV prM protein affect secretion of VLP

Previously, we constructed WN VLP mutants to identify the epitopes on the prM protein 

recognized by 3 virus-specific hMAbs (Calvert et al., 2011). All three of the mutations made 

at K31 in the prM protein (K31A, K31T, K31V) resulted in significantly reduced secretion 

of VLP. Another mutation, T20D had the same effect on VLP secretion. These mutations 

occurred in AA residues that are located on the surface-exposed face of pr and did not 

appear to be involved in interactions with the E protein in prM-E heterodimers or disulfide 

bonds in the prM protein (Li et al., 2008).

To investigate the effects of these mutations on VLP secretion, COS-1 cells were transfected 

with WT and mutant (T20D, K31A, K31T, and K31V) pVAXWN plasmids, cell culture 

supernatant was harvested on days 2 and 7 post-transfection, and detection of viral proteins 

was performed by antigen-capture ELISA, using polyclonal rabbit serum to WNV prM and 

E proteins as capture antibody and mouse hyperimmune ascitic fluid (MHIAF) to WNV as 

detector antibody. Transfected cells were incubated at 37 °C up to 7 days. Detection of 

secreted prM and E proteins was reduced significantly for all prM mutants at day 2 and day 

7 compared to WT using Dunnett’s method of multiple comparisons with an overall type I 

error of 0.05 (Fig. 1). We also conducted experiments in which cells were incubated for the 

first 6 h at 37 °C and then transferred to 28 °C for 7 days, and similar results as those shown 

above were obtained (data not shown). These data indicate that K31 and to some extent T20 

may play important roles in WN VLP secretion.

Effect of mutations in VLP prM on prM-E heterodimerization

During flavivirus assembly prM and E proteins form heterodimers that interact with the 

nucleocapsid and bud through the ER membrane to form immature virus particles. Co-

expression of prM with E is necessary for correct folding of the E protein; however, prM is 

able to form its native structure in the absence of E protein (Konishi and Mason, 1993; 

Lorenz et al., 2002). To determine if the mutations in prM disrupted prM-E 

heterodimerization during formation of VLPs, COS-1 cells transfected with WT and prM 

mutant pVAXWN plasmids were lysed, prM and E proteins were immunoprecipitated with 

either anti-E or anti-prM MAb, and precipitated viral proteins were detected by immunoblot 

(Fig. 2). When VLPs were immunoprecipitated with the anti-prM hMAb 8G8, the E protein 
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was co-precipitated and detected in all cell lysates transfected with WT and mutant 

plasmids. (Fig. 2B). Interestingly, prM protein from the T20D mutant was detected as a 

doublet corresponding to the glycosylated and non-glycosylated forms of the protein. When 

VLPs were immunoprecipitated with the anti-E mMAb 3.91D, prM protein was detected in 

co-precipitate from lysates of cells transfected with WT and K31A, K31T and K31V mutant 

plasmids but apparently not with T20D mutant plasmid. When the concentration of lysate 

from cells transfected with T20D pVAXWN plasmid was increased 2-fold in the 

immunoprecipitation reaction a very small amount of non-glycosylated prM was detected 

(Fig. 2B). These results suggest that heterodimerization of the E and prM protein is not 

affected by mutations at K31, but is affected by the T20D mutation on the prM protein. The 

mutation at T20 permits production of both glycosylated and non-glycosylated forms of 

prM, and only the non-glycosylated form of the protein appears to associate with the E 

protein.

To confirm that the T20D mutation resulted in production of both glycosylated and non-

glycosylated forms of prM, and that glycosylation of the E and prM proteins was not 

affected by the K31 mutations, prM and E proteins were immunoprecipitated from cell 

lysates and digested with the endoglycosidase, PNGaseF, which cleaves all types of N-

linked of multiple glycans. The migration patterns of treated and non-treated samples were 

compared (Fig. 3A). The E protein from WT and prM mutants was shown to be glycosylated 

as indicated by an apparent shift in mobility from 54 kDa to 50 kDa. The prM proteins 

expressed from WT and K31 mutant plasmids were also shown to be glycosylated as 

indicated by a shift in mobility from 20 kDa to 17 kDa. PNGaseF digestion also confirmed 

that the prM doublet seen in the lysate from cells expressing the T20D mutant was due to 

expression of both glycosylated and non-glycosylated forms of the protein since only the 

smaller band (17 kDa) was visible after digestion. To determine the form of the 

carbohydrates on prM and E immunoprecipitated proteins were digested with 

endoglycosidase H (EndoH), an enzyme which cleaves the chitobiosyl unit of the high 

mannose form of the carbohydrate on the glycoprotein. Migration patterns of EndoH treated 

and untreated samples were compared (Fig. 3B). The E and prM glycoproteins of WT and 

mutants were shown to be sensitive to EndoH digestion indicating that in cells the 

glycoproteins were predominately in high mannose form. Processing of high mannose 

carbohydrates to the complex form takes place in the Golgi, therefore, since these protein 

still contained the high mannose form of the carbohydrate they must localize to the ER. The 

overall decrease in prM and E protein concentrations from T20D compared to WT may 

reflect the inability of this construct to assemble heterodimers. Since the K31 mutants 

expressed equal amounts of prM and E proteins in transfected cells as WT, these contructs 

may be able to form stable prM-E heterodimers but unable to form stable particles that can 

interact with cellular factors for efficient release from cells.

Mutations in WNV prM protein affect cellular localization of viral proteins

The immunoprecipitation results indicated that intracellular prM-E heterodimers are formed 

with the K31 prM mutants and to a much lesser extent with the T20D prM mutant, however, 

as shown previously, the VLPs are not secreted. Therefore, the block in secretion must occur 

in a later step in replication. During assembly, flaviviruses bud into the ER lumen of virus-
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infected cells and are transported to the Golgi for subsequent processing (Lindenbach and 

Rice, 2003). To determine whether the prM mutations had an impact on the distrubution of 

viral proteins inside the cell, COS-1 cells transfected with WT and prM mutant pVAXWN 

plasmids were fixed at 6, 12, 24 and 48 h post-transfection, permeabilized and double 

stained with antibodies to detect E protein (mMAb 3.91D), and either ER (anti-calreticulin), 

coatomer (anti-βCOP I), ER-Golgi intermediate compartment (anti-ERGIC53) or Golgi 

(anti-GRASP65) markers (Fig. 4). At 6 h E protein expressed by WT and prM mutant 

plasmids coincided with ER, and ERGIC markers, with some coincidence with βCOPI and 

no coincidence with Golgi (data not shown). In WT transfected cells at 12 h post-

transfection the distribution of the E protein completely coincided with the ER and ERGIC, 

and to some extent with the Golgi (Fig. 4A). At 24 h post-transfection WT E protein 

completely coincided with ER and ERGIC markers while moderate coincidence of E protein 

with the Golgi marker was observed (Fig. 4B). Staining of cells transfected with T20D 

mutant had simliar staining to WT. At 12 h post-transfection distrubution of the E protein 

completely coincided with the ER and ERGIC markers, with moderate coincidence with 

Golgi marker; however, unlike WT, T20D E protein also conincided with βCOPI marker 

(Fig. 4A). At 24 h postransfection distribution of the E protein expressed from the T20D 

mutant moderately coincided with ER and ERGIC markers with less coincidence with 

βCOPI marker and no coincidence with Golgi marker (Fig. 4B).

Distribution of the E protein expressed by the K31 mutants in transfected cells appeared to 

be different from WT. Moderate coincidence of E protein with βCOPI and Golgi markers 

and complete coincidence with ER and ERGIC markers were observed in cells transfected 

with K31 mutant plasmids at 12 h post-transfection (Fig. 4A). At 24 h post-transfection the 

E protein expressed by K31 mutants coincided with ER, ERGIC and somewhat with βCOPI 

markers. Staining of E protein expressed by K31 mutants and Golgi marker was not 

colocalized at 24 h (Fig. 4B). At 48 h E protein expressed by WT and prM mutant plasmids 

coincided with ER, βCOPI, and ERGIC markers. Unlike WT which did not co-localize with 

Golgi at 48 h, E protein expressed from K31 mutants coincided somewhat with Golgi 

marker (data not shown).

The most stricking result was the extremely concentrated and localized distribution of the E 

protein in cells expressing K31 mutants compared to the staining of the E protein from cells 

transfected with WT plasmid. These observations suggest that mutations at K31 in the prM 

protein result in an accumulation of E protein in the ER, ER–Golgi intermediary 

compartments and to some extent the Golgi complex, possibly due to the inability of these 

mutant prM-E heterodimers to effectively interact with unknown cellular factors in order to 

be secreted from the cell.

Effect of mutations in prM protein on virus replication

To determine if these prM VLP secretion-blocking mutations had an effect on virus 

maturation and release, the same mutations were introduced into an infectious cDNA clone 

of the WNV genome. C6/36 cells were transfected with in vitro transcribed, mutant WNV 

RNA and virus was harvested 7 days after transfection. Virus and viral RNA production 

were measured by plaque assay and quantitative RT-PCR (qRT-PCR). The prM and E genes 
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of WT and mutant virus RNA were sequenced on day 0 and day 7, and the introduced 

mutations were found to be present with no compensatory mutations identified. Growth 

characteristics of viruses were determined in one mosquito cell line (C6/36) and two 

mammalian cell lines (Vero and COS-1) by infecting cells at a multiplicity of infection 

(MOI) of 0.1 and analyzing daily medium samples by plaque assay. All 4 prM mutant 

viruses grew similarly to WT in C6/36 cells except for K31T, which had a titer 10-fold lower 

than WT virus from day 1 to day 4 (Fig. 5A). The prM mutant viruses also grew similarly to 

WT virus in Vero cells after day 2; however, all mutant viruses grew more slowly than WT 

between days 0 and 2 (Fig. 5B). Growth of the prM mutant viruses as compared to WT were 

most different in COS-1 cells. While K31V grew similarly to WT virus, T20D, K31A and 

K31T virus titers were about 10-fold lower (Fig. 5C). Average plaque sizes in Vero cells of 

prM mutant viruses harvested from these growth studies were compared to WT virus. No 

significant difference between T20D and WT plaque sizes was seen in viruses grown in any 

cell type. Average plaque sizes for K31A and K31T were significantly smaller compared to 

WT for viruses obtained from all three cell lines. The average plaque sizes were significantly 

less only for the K31V mutant obtained from C6/36 cells (Table 1). These results indicate 

that while virus growth was delayed, and plaque sizes were reduced in Vero cells compared 

to WT virus, the prM mutant viruses were able to overcome deleterious effects and replicate 

in all three cell types.

Since the prM mutants did not show significant differences from WT virus growth in all cell 

culture types we determined the viral RNA-to-pfu ratio of the mutants to assess the presence 

of defective particles and infectious virus compared to WT. Infectious virus titers in cell 

culture medium were determined when peak WT titer was achieved (C6/36 and COS-1 cells, 

day 4; Vero cells, day 2) by plaque assay, and extracellular RNA in the same samples was 

measured by qRT-PCR. The ratio of RNA copies/ml to PFU/ml for mutant viruses was 

compared to WT virus in each cell type and results are shown in Fig. 6. In C6/36 cells there 

was only a significant difference in the ratio of RNA copies/ml to PFU/ml for the K31V 

mutant compared to WT. WT virus produced 1.4 times more RNA copies/ml than PFU/ml, 

while the T20D, K31A, K31T and K31V mutants produced 2.4, 6.3, 7.2 and 15.4 times 

more RNA copies/ml than PFU/ml, respectively (Fig. 6A). None of the mutants had 

significantly higher ratios of RNA copies/ml than PFU/ml when compared to WT in Vero 

cells. WT virus produced 22 times more RNA copies/ml than PFU/ml in Vero cells, while 

T20D, K31A, K31T and K31V mutants produced 26, 49, 57 and 32 times more RNA 

copies/ml than PFU/ml, respectively (Fig. 6B). In COS-1 cells the T20D, K31T and K31V 

mutants had significantly higher ratios of RNA copies/ml to PFU/ml compared to WT virus. 

WT virus produced 15 times more RNA copies/ml than PFU/ml and T20D, K31A, K31T 

and K31V produced 236, 29, 45 and 51 times more RNA copies/ml than PFU/ml, 

respectively (Fig. 6C). These results indicate that in COS-1 cells, the T20D, K31T and 

K31V prM mutations resulted in less efficient production of infectious virus, and growth of 

the K31V mutant in C6/36 cells was less efficient in infectious virus production than WT 

virus.
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Effect of prM mutations on hMAb binding to virions

Previously, the binding of hMAbs to WN VLP epitopes was characterized, showing that V19 

and L33 were key amino acid residues in the VLP epitope recognized by all three hMAbs 

(Calvert et al., 2011). Since the prM mutations (T20D, K31A, K31T and K31V) prevented 

secretion of VLP, binding could not be tested in ELISA. Therefore, these mutations, along 

with 9 other mutations (V19A, V19N, V19T, T20A, T20Q, T24A, L33A, L33K, L33Q) in 

the pr peptide found to have significant effects on hMAb binding, were incorporated into the 

WNV infectious cDNA clone (Calvert et al., 2011). In vitro-transcribed RNA was 

transfected into C6/36 cells, and virus was harvested 7 days later. Introduced mutations were 

confirmed by sequencing of the prM and E genes, and virus titer was determined by plaque 

assay. COS-1 cells were infected with all prM mutant WNVs at an MOI of 0.1 to produce 

virus for antigen-capture ELISA to test hMAb binding. COS-1 derived virus was used in the 

assay in order to directly compare hMAb binding to previous results with VLPs secreted 

from transfected COS-1 cells. Human sera positive for anti-flavivirus antibody was used as a 

control in the ELISA to validate that the concentrations of viral proteins were uniform for all 

mutant viruses tested. Fold changes in reactivity with the control sera range from 0 to 2 and 

indicate that virus preps used in the ELISA contained comparative concentrations of viral 

proteins.

The only mutations that resulted in a significant reduction in reactivity with hMAb 8G8 

were K31A and K31V, with 5- and 4-fold reductions of end-point titers, respectively. The 

T20D mutation resulted in a 10-fold increase in reactivity with hMAb 8G8. All other 

mutations in the pr peptide of WNV resulted in 3-fold or less reduction in hMAb end-point 

titers, which was not considered significant (Table 2). These results suggest that the K31 AA 

residue in virion prM may be important in the binding of hMAb 8G8.

Discussion

Recent research on the functional importance of the prM protein in flavivirus infections has 

revealed that the protein is not only important for viral structure and assembly, but also plays 

an important role in infection and immunity. New evidence shows that non-neutralizing 

antibodies to prM can enhance DENV infection of Fc receptor-bearing cells in vitro as well 

as enhance WNV infection in vivo (Colpitts et al., 2011; Huang et al., 2008, 2006). These 

anti-prM antibodies may assist immature virus particles in cell entry, thereby increasing the 

number of virus-producing cells in secondary infections (Dejnirattisai et al., 2010; 

Rodenhuis-Zybert et al., 2010). The prM protein of flaviviruses also plays an important role 

as a chaperone to the major envelope glycoprotein E. Not only is the prM protein required 

for proper folding and maturation of the E protein during virus assembly, it also protects the 

fusion loop on the E protein from premature fusion before exiting the cell (Konishi and 

Mason, 1993; Lorenz et al., 2002; Yu et al., 2009). Recently, the prM protein of DENV has 

been shown to associate with members of the ADP-ribosylation factor (Arf) family of 

proteins (Kudelko et al., 2012; Wang et al., 2009). These host cellular factors are known to 

play a critical role in intracellular trafficking as well as modulating membrane curvature, a 

function critical to the assembly and budding of flaviviruses from the ER membrane (Beck 

et al., 2008; Garoff et al., 1998). The prM protein of DENV was also shown to interact with 
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vacuolar-ATPases (V-ATPases) in infected cells. These enzymes acidify intracellular 

organelles, including those in the secretory pathway, and pump protons across the plasma 

membrane of the cell. This interaction could be significant in both virus entry and membrane 

fusion via acidified endosomes and secretion of newly assembled virus particles out of the 

cell (Duan et al., 2008).

In the present study, we describe the effects of 4 specific mutations in the WNV prM protein 

on WN VLP secretion. Mutations made in prM K31 and T20 in the prM expressed from the 

pVAXWN plasmid resulted in a loss of VLP secretion from transfected COS-1 cells. While 

K31 mutants were shown to efficiently form prM-E heterodimers, VLP particle secretion 

was blocked, resulting in accumulation of viral proteins in the ER, ER–Golgi intermediary 

compartments and to some extent in the Golgi of transfected cells.

Assembly and maturation of viral particles begins at the membrane of the ER. The prM and 

E proteins dimerize and then form an icosahedral scaffold that leads to budding of the 

enveloped particles into the lumen of the ER. These virus particles are transported through 

the Golgi and released from the cell via the exocytic pathway; however, the exact details of 

this process are poorly characterized (Mackenzie and Westaway, 2001; Welsch et al., 2009). 

Flaviviruses have been shown to associate with calnexin and calreticulin, lectins found in the 

ER that assist in the proper folding of glycoproteins, chaperoning them through the ER and 

retaining incompletely folded proteins (Courageot et al., 2000; Lorenz et al., 2003; 

Mackenzie and Westaway, 2001; Wu et al., 2002). Arf proteins have been implicated in 

DENV VLP trafficking from the ER to the Golgi since depletion of Arf1, Arf4 and Arf5 

resulted in blocking secretion of VLPs and virions (Kudelko et al., 2012; Wang et al., 2009). 

In fact, the prM protein was found to interact with these cellular factors, which may be 

crucial in the trafficking and secretion of virus particles through the cell. While all four 

DENVs and YFV were shown to produce less virus when these proteins were down-

regulated in the infected cell, this had no effect on WNV infection and secretion (Kudelko et 

al., 2012). This descrepancy may be due to differences in the two viral particle systems 

studied, or it may be due to an inconsistency of the role of these cellular proteins in 

flavivirus maturation and secretion.

Interestingly, the epitope containing K31 in the prM protein is positioned at the top of the 

prM-E trimer spike in immature virus particles (Fig. 7A). These mutations had no effect on 

prM-E heterodimer formation and protein glycosylation, and appear to play no role in 

stabilization of trimer spike formation. Since its role in virus assembly does not appear to be 

structurally-related, we can hypothesize that it must play some role in interacting with host 

cellular factors in trafficking the particles through the ER, Golgi and ultimately out of the 

cell. L33 was previously mutated in the WN VLP to an alanine, lysine, glutamine and 

threonine and had no effect on VLP secretion (Calvert et al., 2011). This epitope is not 

positioned as prominently on the top of the prM-E trimer spike as K31 (Figs. 7A and B). It 

is also interesting that the K31 AA residue is sandwiched between two highly conserved 

residues among flaviviruses, G30 and N32, which may indicate that this region of prM plays 

some critical role for prM structure and function.
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The T20D mutation in the prM protein resulted in failure to form the prM-E heterodimer 

containing glycosylated prM as shown by immunoprecipitation studies of lysates from cells 

transfected with the mutated plasmid. The T20D mutation caused inefficient glycosylation 

of the prM protein, and interestingly only small amounts of non-glycosylated T20D prM 

were shown to associate with the E protein (Fig. 2B). The plasmid with T20D mutation also 

expressed glycosylated prM in COS-1, but they were not associated with E protein. 

Glycosylation of the E protein of flaviviruses has been studied extensively and shown to be a 

critical factor in flavivirus replication, maturation and neuroinvasiveness in mice (Beasley et 

al., 2005b; Lad et al., 2000; Li et al., 2006; Scherret et al., 2001). Glycosylation of the prM 

protein has also been shown to be important for heterodimer formation and secretion of viral 

proteins from the cell. In JEV, glycosylation of the prM protein was shown to be an 

important factor in virion assembly and release as well as viral pathogenicity in mice (Kim 

et al., 2008). Deletion of the prM glycosylation site resulted in a reduction of secreted TBE 

and WN VLPs (Goto et al., 2005; Hanna et al., 2005). The T20 AA residue lies in close 

proximity to the glycosylation site on the prM protein in WNV at N15-X16-T17 (Fig. 7B). 

While the mutation does not directly affect the sequence of the glycosylation site, mutating 

the small hydrophilic AA residue threonine to a large negatively charged AA residue 

aspartic acid could affect the local biochemistry of the region which in turn could prevent 

effective glycosylation of the prM in the heterodimer structure and/or destabilize 

heterodimers containing the glycosylated T20D prM. Likewise, each of the prM-E 

heterodimers may be affected by the T20 residues in the other two prM proteins in close 

proximity in the prM-E trimer spike (Fig. 7B). Previously, mutations made at this AA 

residue (A, G, Q) and those made at AA residue V19 (A, N, R, T) had no effect on VLP 

secretion (Calvert et al., 2011).

While these mutations had significant effects on VLP secretion, their effect on virus 

replication was measurable, but not as dramatic. K31 mutants replicated reasonably well in 

the three cell types tested (C6/36, COS-1 and Vero cells), with a few exceptions. The K31T 

mutant replicated more slowly in C6/36 cells than WT or the other prM mutant viruses, 

while in Vero cells all the mutants replicated more slowly than WT before day 2 post-

infection. In contrast, K31V was the only mutant to replicate similarly to WT virus in 

COS-1 cells. Comparisons of plaque morphology revealed that all K31 mutants obtained 

from any of the three cell types (except for K31V from COS-1 cells) produced significantly 

smaller plaques than WT viruses in Vero cells, indicating a replication defect. In 

comparisons of the amount of extracellular virus RNA (presumably packaged in defective 

particles) to infectious virus particles, the K31V mutant produced significantly higher ratios 

of RNA to infectious virus than WT virus in C6/36 and COS-1 cells, while the K31T mutant 

only produced significantly higher ratios of RNA to infectious virus than WT virus in 

COS-1 cells. The T20D mutant also produced higher ratios of RNA to virus than WT virus 

in COS-1 cells. While the differences in production of VLP and virus particles with these 

mutations are surprising, it is not unprecedented. TBE VLP secretion was inhibited by a 

mutation at prM AA residue 63 from a proline to a serine; however, when this same 

mutation was incorporated into the virus genome, only a 10-fold decrease in titer over the 

first 48 h of replication was documented (Yoshii et al., 2004). Likewise, when mutations in 

JEV ablated glycosylation of the prM protein, virus particles continued to be produced, 
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although at a 20-fold decreased titer from WT (Kim et al., 2008). Taken together, these 

studies demonstrate that mutations that affect VLP formation and secretion may not 

completely have the same effects on virions. This observation is important to consider when 

using VLPs to study virus structure and function, and significant findings should be 

confirmed with replicating virus.

Epitope mapping with hMAbs to the WNV WT and mutant prM proteins revealed a large 

disparity between VLP and virion presentation of the prM protein. This may be due to the 

relative concentrations of prM present in the two systems, or to the presentation of the 

protein itself and the accessibility of the epitopes recognized by these hMAbs. 

Concentrations of VLPs were standardized by optical density in an ELISA designed to 

detect all prM and E proteins in the supernatant. Virions were standardized by PFU/ml titers, 

and viral protein concentrations were validated with the inclusion of polyclonal anti-

flavivirus human sera. TBE VLP which only contains M is the only VLP structure to be 

solved of the flaviviruses, therefore it is difficult to compare the unknown structure of the 

WN VLP with the resolved structure of the mature and immature flavivirus particle 

(Ferlenghi et al., 2001; Kuhn et al., 2002; Zhang et al., 2003). While differences between 

virus- and VLP-expressed E protein do not appear to affect epitope expression, differences 

in protein arrangements between VLP, mature and immature virions could account for 

differences in epitope recognition on the prM protein by the hMAbs in our study. We are 

currently conducting co-crystallization studies to elucidate binding of virions by hMAbs.

This study reiterates the importance of the prM protein in maturation and assembly of VLP 

and virions and highlights a structural region that has not been previously shown to be 

important for particle maturation and secretion. The K31 AA residue in the prM protein of 

WNV has a significant impact on WNV particle assembly and secretion processes. Further 

investigation into the specific role of the prM protein and the critical epitopes involved will 

be needed to understand the process of intracellular trafficking of virus.

Materials and methods

Cells

C6/36 (Aedes albopictus mosquito), Vero (African green monkey kidney) and COS-1 

(African green monkey kidney) cells were cultured as described previously (Davis et al., 

2001; Huang et al., 2000). Cells were maintained in DMEM (Invitrogen) supplemented with 

10% fetal bovine serum (FBS), 2 mM L-glutamine, 110 mg/L sodium pyruvate, 0.1 mM 

nonessential amino acids, 20 ml/L 7.5% sodium bicarbonate and penicillin (100 U/ml)/

streptomycin (100 µg/ml). Vero and COS-1 cells were grown at 37 °C with 5% CO2 while 

C6/36 cells were grown at 28 °C with5% CO2.

Antibodies

The anti-prM MAbs 8G8 and 5G12 (a kind gift from I. Trakht and G. Kalantarov, Columbia 

University) are WNV specific hMAbs reacting to AA residues V19 and L33 in the prM 

protein of the VLP (Calvert et al., 2011). Anti-E MAbs 3.91D and 3.67G were obtained 

from the Arbovirus Diagnostic and Reference Collection activity, DVBD/ADB. These MAbs 
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used in the immunoprecipitation studies are WNV specific mMAbs reacting to AA residues 

S306, K307 and T332 in DIII of the E protein (David C. Clark, unpublished data).

Site-directed mutagenesis and production of mutant infectious WNV and WN VLP

The WNV two-plasmid infectious clone (WN-IC) and pVAXWN plasmid were utilized to 

produce WNV and VLP respectively, as previously described (Beasley et al., 2005a; Davis 

et al., 2001; Kinney et al., 2006). Site-specific mutations were introduced into the prM gene 

of both systems using the QuikChange site-directed mutagenesis kit (Stratagene). Mutagenic 

primer sequences used for all constructs and transient expression of WN VLP in COS-1 

cells by pVAXWN electroporation have been previously described (Calvert et al., 2011). 

Electroporated COS-1 cells were recovered in 6 ml of DMEM supplemented with 10% FCS. 

Cells were seeded into 25-cm2 culture flasks for VLP expression and incubated at 37 °C 

with 5% CO2. Six hours after electroporation, the growth medium in flasks was replaced 

with DMEM containing 2% FCS. Tissue culture medium were harvested 2 and 7 days after 

electroporation for determination of VLP secretion by ELISA.

Once full length WN-IC cDNA was obtained, in vitro transcription of RNA was carried out 

as previously described (Kinney et al., 2006). C6/36 cells were transfected with transcribed 

RNA by electroporation. Transfected cells were incubated at 28 °C/5% CO2 for 7 days at 

which point supernatant was harvested and infectious virus titers were determined by plaque 

assay. The prM and E genes of WT and mutant viruses were sequenced, and the correct 

mutations were found to be present in all mutant viruses with no compensatory mutations 

present.

Characterization of WN-IC mutant viruses in culture

Viral growth curves were performed in triplicate in 6 well plates of Vero, COS-1 or C6/36 

cells at a MOI of 0.1. After adsorption for 1 h, maintenance medium containing 2% FCS and 

penicillin/streptomycin was added and cultures were incubated in 5% CO2 at 37 °C (Vero 

and COS-1 cells) or 28 °C (C636 cells). Aliquots of culture medium were harvested every 

day for 7 days, FCS concentration was adjusted to 20% and aliquots were stored at 80 °C 

prior to titration and RNA extraction. Viral RNA was extracted from virus supernatant with a 

QIAmp Viral RNA kit (Qiagen). WNV-specific primers to the structural genes used were 

based on published data of WNV, strain NY99, and sequencing was carried out as previously 

described (Kinney et al., 2006). Viral RNA was also quantitated at peak viral titers on either 

day 2 for Vero or day 4 for COS-1 and C6/36 cells. A 5 µl aliquot of each sample was added 

to master mix from iScript One-step RT-PCR kit (Bio-Rad) containing 200 nM of probe, 

WN1186F (5′–FAM-TGC CCG ACC ATG GGA GAA GCT C–3′), 200 nM of forward 

primer, WN1160 (5′–TCA GCG ATC TCT CCA CCA AAG–3′) and 200 nM of reverse 

primer, cWN1229 (5′–GGG TCA GCA CGT TTG TCA TTG-3′). WNV-specific RNA was 

tested in triplicate and measured by qRT-PCR using homologous RNA standards on a Bio-

Rad IQ5 Real-time PCR detection system under the following conditions: 50 °C for 30 min, 

95 °C for 15 min, followed by 45 cycles of 94 °C for 15 s, and 57 °C for 1 min with 

continuous fluorescence data collection. Virus plaque titrations were performed under 

double agarose overlay in six-well plates of confluent Vero cells (Huang et al., 2000). The 
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second agarose overlay containing neutral red vital stain was added 4 days after infection, 

and plaques were counted on day 5 after infection.

Analysis of intracellular mutant VLP proteins

Two days after transfection of COS-1 cells with pVAXWN WT and mutant plasmids, cells 

were harvested and cell lysate was produced as previously described (Blitvich et al., 2003). 

Similarly, control antigen was produced with non-transfected COS-1 cells. Viral proteins 

were immunoprecipitated from lysates using the Pierce Immunoprecipitation kit (Thermo 

Scientific) with resin coupled to 75 µg of WNV murine anti-E 3.91D antibody or 75 µg of 

WNV human anti-prM 8G8 antibody following the manufacturer’s in lysates were analyzed 

by digestion after immunoprecipitation using N-glycosidase F (PNGaseF) or 

Endoglycosidase H (EndoH) (New England Biolabs) following the manufacturer’s protocol, 

before analysis by SDS-PAGE.

SDS-PAGE and immunoblotting

WN viral proteins from immunoprecipitated lysates were separated by SDS-PAGE on a 

reduced 4–12% Bis/Tris gel (Invitro-gen). All procedures were performed at room 

temperature. Proteins were blotted electrophoretically from the gels onto nitrocellulose 

membranes and washed for 5 min in PBS/0.1% Tween wash buffer. Non-specific binding 

sites were blocked with 1% BSA/PBS for 1 h while rocking. WNV murine anti-E MAb, 

3.67 G (10 µg), and purified rabbit polyclonal sera to WNV prM (10 µg) (Meridian 

LifeScience) were incubated with the membrane for 1 h with gentle rocking. Membranes 

were washed again in PBS/0.1% Tween wash buffer three times for 5 min each. Goat anti-

mouse antibody and goat anti-rabbit antibody conjugated to alkaline phosphatase (Jackson 

Immunoresearch) were diluted 1:200 and incubated on the membrane for 1 h with gentle 

rocking. Membranes were washed as described previously and BCIP/NBT phosphatase 

substrate (KPL) was added to the membrane until a color change appeared. The reaction was 

stopped by the addition of water.

ELISAs

All ELISAs were performed in 96-well plates (Maxisorp plates, Nunc). To test for secretion 

of mutant VLP antigen, rabbit hyperimmune sera to WNV prM and E proteins was diluted 

1:1000 in carbonate/bicarbonate buffer (50 mM sodium carbonate, 50 mM sodium 

bicarbonate, pH 9.6) and incubated overnight at 4 °C. Plates were washed five times with 

PBS/0.1% Tween wash buffer with an automatic plate washer. Non-specific binding sites 

were blocked with 3% rabbit serum in PBS (100 µl/well) and incubated at 37 °C for 1 h. 

Blocking buffer was removed before supernatant from transfected COS-1 cells was added to 

the plate in doubling dilutions in 3% rabbit serum/PBS (50 µl/well). Antigen was incubated 

at 37 °C for 2 h, after which the plates were washed as previously described. MHIAF to 

WNV was obtained from the Reference Collection of the Diagnostic Laboratory, ADB, 

DVBID, CDC, and used as the primary antibody at a dilution of 1:1600 in 3% rabbit 

serum/PBS and incubated at 37 °C for 1 h. Plates were washed 5 times before the addition of 

rabbit anti-mouse antibody conjugated to horseradish peroxidase (50 µl/well), diluted 1:5000 

in 3% rabbit serum/PBS. After an incubation period of 1 h at 37 °C, plates were washed 

again ten times. Enhanced K-blue TMB substrate (Neogen) was added to each well of the 
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plate (100 µl/well) and incubated in the dark at room temperature for 10 min. The reaction 

was stopped with the addition of 1 N H2SO4 (50 µl/well), and the plates were read at 450 nm 

on an automatic plate reader.

To test the reactivity of the mutant viruses with the hMAbs the protocol remained the same 

with some exceptions. Viruses were diluted to a concentration of 106 PFU/ml in 3% rabbit 

serum/PBS. Purified hMAbs were used as the primary antibody and added to the wells in 

two-fold dilutions in 3% rabbit serum/PBS (50 µl/well) starting at 50 µg/ml. The secondary 

MAb, rabbit anti-human conjugated to horseradish peroxidase (50 µl/well) was diluted 

1:5000 in 3% rabbit serum/PBS. The rest of the ELISA was carried out as described above.

Immunofluorescence and confocal microscopy

Transfected COS-1 cells were grown on 8-well chamber slides (Labtek) and incubated in 5% 

CO2 at 37 °C. 48 h after transfection, medium was removed and cells were washed 3 times 

in PBS. Cells were fixed to the slide with 4% (w/v) paraformaldehyde in PBS for 10 min 

and permeabilized with 0.1% (v/v) Triton-X 100 in 0.2% (w/v) BSA/PBS for 10 min. Non-

specific sites were blocked with 10% (v/v) goat serum in PBS for 30 min at 37 °C. Cells 

were incubated with WNV murine anti-E antibody 3.91D (5 µg/ml) and either rabbit anti-

calreticulin (1:500), rabbit anti-βCOP1 (1:100), rabbit anti-ERGIC53 (1:100) or rabbit anti-

GRASP65 (1:500) diluted in PBS for 30 min at 37 °C before being washed 3 times in PBS. 

Secondary antibodies, goat anti-mouse conjugated to FITC and goat anti-rabbit conjugated 

to Texas Red, were diluted 1:100 in PBS and incubated on the cells for 30 min at 37 °C, and 

cells were washed again as previously described. Slides were dried before the addition of 

Prolong Gold anti-fade reagent with DAPI (Invitrogen). Coverslips were mounted on the 

slides and allowed to cure at room temperature overnight. Images were viewed and collected 

with a Carl Zeiss LSM-Pascal confocal microscope.
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Fig. 1. 
Mutations in the prM protein reduce secretion of VLPs. COS-1 cells were transfected with 

wild type (WT) and mutant pVAXWN plasmids. Cell culture supernatant was harvested 2 

(open bars) and 7 (cross-hatched bars) days post-transfection, and prM and E proteins were 

detected by ELISA. Mean absorbance values (±SE) were calculated from two independent 

experiments performed in duplicate. Asterisks indicate statistically significant differences 

compared to WT plasmid using Dunnett’s method of multiple comparisons with an overall 

type I error of 0.05. Control, non-transfected cell control.
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Fig. 2. 
Immunoprecipitation of prM and E proteins in COS-1 cells transfected with mutant VLP. 

COS-1 cells were transfected with WT and mutant pVAXWN plasmids. At 2 days post-

transfection, cells were lysed. Whole cell lysates (A) and lysates immunoprecipitated with 

an anti-E mMAb (3.91D) or an anti-prM hMAb (8G8) (B) were separated by SDS-PAGE on 

a reduced 4–12% Bis–Tris gel and transferred to nitrocellulose membranes. Proteins bands 

were detected using anti-E mMAb (3.67G) and anti-prM rabbit polyclonal sera. Non-

transfected COS-1 cell lysate was used as a control (C).
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Fig. 3. 
Analysis of glycosylation of prM and E proteins in COS-1 cells transfected with mutant 

pVAXWN plasmids. COS-1 cells were transfected with WT and mutant pVAXWN 

plasmids. At 48 h post-transfection, cells were lysed. Lysates were immunoprecipitated with 

an anti-prM hMAb (8G8). Immunoprecipitated proteins were digested with (A) PNGaseF (F

+) or without PNGaseF (F−), and with (B) EndoH (H+) or without EndoH (H−). Proteins 

were separated by SDS-PAGE on a reduced 4–12% Bis–Tris gel and transferred to 

nitrocellulose membranes. Protein bands were detected using anti-E mMAb, 3.67G, and 

anti-prM rabbit polyclonal sera.
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Fig. 4. 
Intracellular localization of expressed E proteins of COS-1 cells transfected with prM 

mutant pVAXWN plasmids. Transfected COS-1 cells expressing pVAXWN WT and prM 

mutant plasmids were fixed 12 (A) and 24 (B) hours post-transfection and stained with 

antibodies against WNV E protein (3.91D) and calreticulin, an ER marker, ER–Golgi 

intermediary complexes βCOP1 and ERGIC53 or GRASP65, a Golgi marker. Co-

localization of the E protein with these marker proteins are depicted in the merged image. 

Nuclei of cells were stained with DAPI and shown in the merged image.
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Fig. 5. 
Virus growth kinetics in C636, Vero, and COS-1cells. C636 (A), Vero (B) or COS-1 (C) 

cells were infected at a MOI of 0.1 and virus titers were measured by plaque assay every day 

for 7 days. Bold line indicates assay limit of detection. Standard error bars are shown for 

days 4 and 6. The data shown are from two independent experiments.
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Fig. 6. 
Viral RNA:PFU Ratio of prM mutants. Virus was grown in C636 (A), Vero (B), or COS-1 

(C) cells and virus supernatant was harvested on days of peak virus titer. RNA was extracted 

and RNA copies/ml was determined by qRT-PCR. Virus titer was determined by plaque 

assay. The number of RNA copies/ml was divided by the virus titer to obtain the ratio of 

RNA copies/ml to PFU/ml. Asterisks indicate statistically significant differences compared 

to WT virus using Dunnett’s method of multiple comparisons with an overall type I error of 

0.05. The data shown are from three independent tests. Plaque assays to determine virus titer 
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were performed in duplicate, while qRT-PCR experiments were performed in triplicate for 

each independent test.
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Fig. 7. 
DEN2 prM-E trimer spike at neutral pH (PDB ID: 3C6D): (A) side view of the viral surface 

of the DEN2 prM-E trimer spike and (B) top view toward the viral surface. The E protein is 

shown in white, while the prM protein is shown in green. V19 is highlighted in yellow, T20 

is highlighted in orange, K31 is highlighted in red, L33 is highlighted in purple and the 

glycosylation site (labeled CHO) is highlighted in cyan.
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Table 2

Effect of hMAb binding to WNV IC mutant viruses with amino acid substitutions in pr.

pr AA substitution
in WNV-ICa

Fold change in human Ab titer with pr mutantsb

8G8 5G12 Human serac

WT prM 1.0 1.0 1.0

V19A 2.5 1.7 2.0

V19N 1.5 1.0 1.5

V19T 2.0 1.7 1.5

T20A 3.0 2.0 2.0

T20D 0.1 1.7 1.0

T20Q 1.5 1.3 1.0

T24A 1.3 1.5 1.3

K31A 5.0 2.7 1.2

K31T 2.7 2.0 2.0

K31V 4.0 2.0 2.0

L33A 2.0 2.0 1.3

L33K 2.0 2.0 1.3

L33Q 2.0 1.5 1.3

a
Amino acid substitution at specific residue in the pr portion. Mutants in bold were previously determined to have a significant effect on VLP-

hMAb reactivity.

b
Four fold reduction or more (bold) in MAb endpoint titer of mutant viruses compared to WT was considered significant.

c
Human sera positive for anti-flavivirus antibody was used as control in ELISA to verify normalized viral protein concentrations.
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